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Abstract

A nonlinear boundary value prcblem is considered feor
the axisymmetric buckling of thin spherical shells subjected
to uniform external pressure. The unifermly compressed
spherical state is a solution of this problem for ail vslues
. the pressure, We prove, using Poincaréfs method, that
for pressures sufficiently near each simple eigenvalue of
the linearized shell buckling thseory, there is another
{buckled) =olution of the nonlinear problem. A convergent
perturbation expansion is used to analyze the buckled soluticns
near the eigenvalues. For a limited range of caps, we also
prove that one or three bickled szclutions bifurcate from the
multiple (double) eigenvalues deperding on their order. The
existence of a "lowest" initermediate buckling is established

and precise upper and lower boun:ls are given on its magnitude.

3 roductio

The surface of & thin elastic spherical cap is subjected
to a uniform pressure, p, which is directed towards the cap's
conter of curvature. It is a well known experimental result,
806 6.8 [1], that as the pressure increases from zero the
cap deforms only slightly from the spherical shape until a
critical pressure p = P, is reached. Then the cap suddenly
jumps, with relatively large deflections, into a non-spherical
shape which we call the buckled state. The fundamental problem
of shell buckling is to determine the mechanism which initiates
the jumping and to ob*ain estimates of P




Previous investigators r have assumed, as an approxima-
ticen to experimental conditions, that the cap's edge is rigildly
clai.ped, 1.2, the displacement and chinze of slope are zero.

In this paper ecdge conditions are considered for which the
spherical shape {the unbuckled solution) is a pozsible solution
ol the nonlinear preblem for all pressures. We refer to these
as vifurcation buckling problems since other (buckled) sclu-
tiong of the nonii:ear probliem may brancn from tne unbuckled

®  For example, a bifurcaticn buckiing problem, which

solution,
we call Probleri B, ig obtained if the following conditions are
specified on the edge of the cap: no rotation (clamped);

zero transverss shear force, l.e. the edge is free to move
aormel to the spherical surface; and the meridional memorane
stress is prescribed so that it is in equilibrium with the
epplied gsurface pressure, Othrer tifurcation problems are
obtadned, for exawmple, by replecing the condition on the
rieridional stress in Problem B with a corresponding one on tre
meridional membrane displacement, or by permitting the cap to
free.y rotate instead of clamping it. The bifurcation problems
are precisely formulated in Section 2. In Secticns 3, 4 end S
only Problem 3 i3 considered. However analogous results can

be established for other hifurcation problems. Some of these

are contained in the fingl section of the paper. We consider

I'See el [1—7] and references contaired therein.

¥ For .he rigidly c¢lamped cap, which we —efer to as relaxation
buckling, the spherical shape is a solution if and only if
p'==0.




only axisymmetric deformations of the csp.

Bifurcation buckling provlems flor spherical cap. were
first considered in an approximate form in {8]. An equivalent
ol Problem B was treated in [5] where the lineari-~d buckling
theory was partially analyzed and aprroximate solutions of
the nonlinear problem were obtained. The linear buckling
theory hac been previously discussed.®

The precise knowledge of the unbuckled state for the
bifurcation problems, permits us to rigorously establish
certain prouperties of the sclution. In Section 3 we prove
that for all P sufficiently near each simple eigenvalue of
the linearized shell buckling theoryt a solution of the non-
linear problem exists. Only ore solution of tr. nonlinear
problem branches from each simple eigenvalue., A related result
is established in Section 4 for t-s other eigenvalue._, which
are all double, and for a limited range of caps. However, we
find the surprising result that one or three solutions of the
aonlinear problem bifurcate from the double eigenvalues
depending on their order. The conjectured load-deformation
curves for simple eigenvalues are sketched in Pig., 1. A
perturbation expansion, which is valid near each eigenvalue,
is used to prove that the curves in Fig. 1 have the form of
the sclid portion.

Our method of analysis is the Poincaré bifurcation

theory uced to prove the existence of periodic solutions of

* Privately commnicated to the author by W. Squires, 1958.

t Here P is a dimensionless parameter proportional to p, see
Eq. (202‘) below.




initial value problems. Pre-icus apolications of this tech-
nique to boundary value problens are given in [9 ,10] where
related buckling problems for columns and circular plates ae
stu.ied. In Section 3, where t e simple eigenvalues are
studisd, the procedures employed are closely related to those
given in [10]. Modifications are made in Section |} to inves-
tigate the double eigenvalue case.

Friedrichs [11] proposed an energy mechanism and intro=-
duced the concept of an intermediate buckling load to explain
the experimentally ouserved jumping of comilete spheres frenm
an unbuckled to a buckled state. Modifications and extensions
of these ideas were subsequently proposed in [12]. As applied

to the bifurcation buckling of caps, see e.g. Fig. 1, sev-

(n)
M

ent branches of the solution may exist. For a given tranch,

eral intermediate buckling locads P corresponding to differ-
say bifurcating from the eigenvalue Pn, Pén) is defined as

a load in the interval Pén)‘<Pén)'<Pn such that for all P in
P{“’ <P < Pén) the unbuckled state has less potential energy
than the corresponding buckied state and conversely for P in
Pén) <P <« Pn. In Section 5 we establish, assuring that the
potential energy has a minimum for every finite P and ¢ > O,
the existence of a lowest intermediate buckling load PM' see
Pig. 1. It is shown to be bounded from below by the lowecst
buckling load of an "equi lent" flat circular plate buckling
problem and bounded from above by the lowest eir-nvalue, P, of

the linearized shell buckling theory. More accurate upper

bounds, which are considerably less than P, are rigorously




obtained in Section 5 by a minimization procedure, These
bounds braciet PM for a limited range of caps. It seenms
likely that with suitable modifications corresponding esti-
mates of intermediate buckling loads can be obtained for the
unsymmetric buckling of spherical caps and other shell bifur-
cation buckling problems. Some of the results of Section §
are closely related to ones previously announced by

Vorovich [13].

2, Formulation of the Boundary Value Problem

The elastic spherical cap is of thickness 2h and radius
R and has a small angle of opening 2/\ ; see Fig. 2 for the
shell geometry. We consider the axisymmetric deformations of
the cap that result from a uniform and inwardly directed pres-
sure p. The non-vanishing mid-surface displacements, u and w
which are in the meridional and normal directions to the shells
mid-surface are therefore functions only of the polar angle 0.
Both w and p are counted positive when directed towards the
center of curvature, Nonlinear differential equations which
describe the amall finite axisymmetric deformations of thin
spherical caps have been derived by several authors, e.g.

[1,2,14+16] . These equations may be written as,
(241a) orx) +Af(x) = pg(x)[r(x) +1] ,

(2.1b) og(x) = -P[£3(x) +2¢(x)]
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Here we have used the dimensionless variables:

X

it

o//y , tlx) =5 BHEL = (A0 B/M)

P = (R/M)%(p/22C) , A =Po , C° = 2/3(1-v9) ,

and the linear differential operator G which is defined by
Gh(x) = x-B[x3¢'(X)]' ’
where a prime indicates differentiation with respect to x,
Here £ is Young's modulus and v is Poisson's ratio.¥
The "excess" stresa function g(x) in (2.1) is defined

such that the meridional and circumferential membrane stresses

| gud

Le and

9y and ob and the ccrresponding dimensionless stresses

:¢ are given by

]

Lo(x) = (R/n)(2/cC)o (0) = g(x) - P,

(2.2b)

Z;(x)

The outer surface bending stresses cg and cz, and the corre-

[xg(x) -xP}"' .

U]

(H/n)(z/EC)ob(e)

spending dimensionless stresses gg and Zg are given in terms

of r(x) by

To(x) = (R/R)(2/32¢%)0(8) = x£'(x) + (1+v)f(x) ,
(2.2¢)

[p(x) = (R/n)(2/326%)00(8) = vxr'(x) + (1+ V)£ (x) .

The independent variable f(x) is related to the slope of
the deformed middle surface of the cap with respect to the
initial spherical shape. Thus if f(x) = O for a given defor-

mation the deformed middle surface is also spherical. We

® The 1 dependent variables a(x) and y(x) employed in previous
papers [2,3] are related to the present variables by,




refer to p, waich is defined in (2.2a), as the reometrical

parameter and P and A as either pressure or loading parameters.
To complete the formulation conditions at the center

x = 0 and the edie x = 1 are required., FPFrom the syrmetry of

the deformation and the regularity of the membrane and uvend-

ing stresses at the origin we ootain with aid of (2.1) that,
(2.3) £'(c) =g'(0) =0 .

The edge of the cap is restrained from rotating so that,
(2.4a) (1) =0 .

In addition, we assume that at x = 1 the transverse shear
force vanishes and [Q(l) is specified so t..at the cap is in
equilibrium with the applied pressure, Tnils ylelds the lLound-

ary condition
(2.4b) g{i) = ¢C .

The tifurcation buckling problen, Problem 8, is defined
as the boundary value problem consisting of the differential
equations (2.,1) and the boundary conditions (2.3) and (2.4).

Other boundary conditicas can be specified at x = 1

to ylel¢ bifurcation buckling problems for clamped caps, e.ge.

(2.5) f(1) =0, g'(1)+(1-vig(l) =c0C .




These conditions imply that on the edge the transverse shear
force vanishes and the meridional disinlacement u (or equiva-
lently the horizontal displacement) is proportional to P The
proportionality constant is determined so that the spherical

form is a possible solution for all P.

3. The Existenice of Buckled Solutions.

A solution of Problem B that is valid for all finite P

and 2 is the unbuckled golution, f(x) = g(x) = 0. This corre-

sponds tv a state of uniform compression in which
e (%) =;:¢ (x) = =P,

and the deformed middle surface remains spherical.

The existence of buckled states will now be established
using Poincare's method. Specifically, we prove in this sec-
tion that for every 2> 0 and for every positive integer n
there exists a buckled solution when P is in a sufficiently
smell and full interval about the n-th simple eigenvalue,

Ppo of the linearized shell buckling theory. This is in con-
trast to the buckled circular plate [10] where the load must
be slightly greater than each eigenvalue of the corresponding
linear buckling theory. Ve also show that for P sufficiently
near P the solution has n-l1 intermal nodes. In the follow-
ing section the solutions of Problem B near the other eigen-
values of the linearized theory, which are all double, are

atudied.



To employ Poincaré's method rarameters € and ° and new

indepsndent variables y(x) and z(x) are delined by,

(3¢1a) e = 1lim [xf(x)]' ’ &S = el 1im [xg(x)]' R
x—0 x - 0

(3.10) y(x) = e"lxr(x) . z{x) = e°lxg(x) .

The differential equations {2.1) of Problem B are then given

by,

(3.2a)  hy(x) +Ppy(x) = cz(x)[1+ey.x)/x] ,

(3.2b) Hz(x) = -Jeyx)/x +25(x)] ,

where K is the linear differentisl operator,
(3.2¢) Hh(x) = x"M[xb(x)] " .

The iritial value problem, ~~, 1s defined by the

differential equations (3.2) and the initial conditions:

(3e38) Y(C)

1)
(&

’ y'(O) =1,

(303b) 2{0)

i
o

» Z'(O) = 5.

Fer ell finite P,e,5and © > 0, Problem . has & unique

solution in the intervel 0 < x < 1 which is analytic in
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P, ¢ and &. This result can be proved by tihe same methods
used in [10] to establish an analogous result for the buckling
of circuler plates and hence the proof is not given here. For
fixed P > 0 values of the pa.ameters P, ¢ and & are sought
such that the sclution,[y(x;P,€,8), z(x;P,€,5)] of ~ satisfies

the boundary conditions
(3-h) y(l;P,S»é) = Z(ISP,Eyé) =0 .

If such a choice of parameters is possible it then follows

from (3.1b) that f(x) = eﬂ"ii*“';‘) and g(x) = £& {x'.:,e“ﬂ

is a sclution of B.

A solution of~§fwhicb satisfies the boundary conditions
(3.44) 18 obtained by choosing the special parameter value,
e =0 in (3.2). The resulting initial value problem for the
functions y = y(x;?,O,*),'z = z(x;P,0, ) has solutions which

satisfy (3.4) if and only if

(3.5a) P{/) = Pn(f)

1]

2;/i*1§/o 22/2 7

t n= 1,2,.00’
}

Wl

N

N
n

(3.50) &) = &() Z )
where « is the n-th zero of the Bess=el function Jl(x). The
quantities Pn(b) are the eigenvalues (or buckling loads) of

the linearized buckling theory and they are aimple eigenvalues

1f P # fup @nd P # Pn(Pmn) = ?m(pmn) where,

e

4
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{3.6)

mn = 1,2,eee, ®|FEN .

The sclutions are the eigenfunctiocns (or buckling modes) of

the linearized theory and for simple eigenvalues are given by*

-~

i

. . (n) - . .
y(x.Pn.O.ch) v (x) (An/én)Jl(dkx) ,

(3.7)

n= 1,2.-..’

Z(I;Pnsosé»}l) = z(n) (X) = AnJl("‘;lx) »

S o o« ey o -t o

where
= - in
An = 2 /MnJl(O) L4

The corresponding solutions of Problem B reduce to the unbuck-
led soclution.

Thus for each finite ¢ > O there are a denumerably
infinite number of ro-ts [P ,C,% ], n = 1,2,..s of (3.4).
According to the implieit function theio are other roots of

{3.4) near [Pn,O,én] if the appropriate Jacobian
(3.8) gz 4o, n=1,2,.. .
& P P b

Here we have used the notation

# For simplicity, the explicit dependence of the solutions on
p is suppressed here and in the remainder of the section.
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(309) C% F’(XQP;ep/E) (n)(X) » etce. n 1;2,000 .

Since y and z are analytic in P and &, the initial value
problems (variational problems) satisfied by Tpr J.- 2p
and 28 can be obtained by formel differentistion off;‘with
respect to F and 5. Thus we obtain from (3.2) and (3.3)

using (3.7) and (3.9},

N
st \
(3.108) ByfMep oy(™ = o[a{M ] gl (o) = ¥V (0)e0)
(3.10b) Hz(n) = ZW(n) Zén)(O) =z1§nr(0)=0;‘:~
TFL,2) 0
(3.110) g iy = (D) g™ (0) = ‘j" (0=0,)
i
(3e110) B2l = -2y P) 2™ (0) =0,z o)=1.
o ] b ?

The explicit solution of (3.11) (not presented) yields,

at x =1, the relations

‘hoirofe
(3.12) 2 M=y M. , mn=1,2,..., wh.

= =0
=0 if . rn




[
L

Therefore it follows from (3.8) and (3.12) that
(3,13 7= y;’”(l)ng;lyé“)u) -zé“)(l)l :

Hence, J = 0 If P = fﬁn and P = P and nothing can be c.oncluded
concerning the existence of neighboring rocts to

{P w7006 mn)}. This case is considered in the following
section. To prove that J # O if £ # ﬁmn, P # P we assume

the contrary, i.e. let,
(3.14) w1y = 2725 2 (1) = o

where a is an erbitrary real constant. ThenJyén)(x),zén)(x)]
is a soluticn of (3.10) that sacv.sfies the boundary conditions
{3.14). A solutior of this boundary value problem exists
if and only if the irhormogeneous terms are orthogonal to every
solution of the houogeneous adjoint problem, This leads to
the condition that {or all a
1
i Jf(«h})xdx =0,
"0
which is impoasible and hence J # O.
Rence, by the Implicit function theorem and the analyti-
city of y and z in the parameters, (3.L) can be uniquely
solved for P and & as analytic functions of € in some suf-

ficiently small neighborhood of sach root [P , 0,7 ], ¢¥# 7

The solutions are the analytic functions
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(3.15) P = P(n)(a), S = 6(n)(e), el < e, n= 1,200
which satisfy the conditions
P(n)(o) =P, H(n)(o) = 5n .

For sufficiently small ¢

L
it

fix;e) ex'lyn(x;e) ex'ly(x;P(n)(e),e,5(n)(e)) ,

(3.16)}

ex”t

]

g(x;e) z, (x3¢)

Hi

ex'lz(x;P(n)(e),e,é(n)(e))

are solutions of B.

The soluticns of B neser € = C are now ccnsidered. Since
p(n)(e), 4{3)(5}, yn(x;e) and zn(x;a\ are anaslytic functions
there, they have convergent expansions in some interval

el < cﬁ given by:

L) o 4
- ' (n) i - !""’"’.\(n) i
( P(?)(C) = Pnﬁ;;;Pi et , 5(n)(e) = A“tTZI‘i ¢
3.17
(23] Lo
raxie) = y ™y orels g =M i Pho

The expansion coefficients are determined in the usual w.y by

substituting (3.17) into (3.2) and (3.4) and equating the

coefficients of each power of €. cach of the resulting

system of linear boundary value problems for the cocefficients

[ygn), zin)] has a soluticn if and only if the appropriate
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orthogonality condition is satisfied. PFor the “irst two of
these problems with i = 1,2 the orthogonality conditions
yield

1

(3.18a) P{“) = 60
N o,J (¢

3/
Jl( nx)dx >0,

\.1

n)fO

1

(3.180) p{™ = -~ ;—L(‘f—;-)-a- [ay{™ tx) + 67021 (0] ) ax
nY2' ' n 0

23! (o). pin) 1
- IJZ( ‘n)l | (“)(x)J (< x)xdx .
2'“n ‘0

Thus it follows from thc first of (3.17) and (3.18a) that for
each n solutions of B must e€xist for all P in some small
interval about Pn.

For sufficiently small ¢ we have from (3.17)
To(xse) = y ™ (x) sc(e) .

Hence in the interval 0 < x < 1, Yn has the same number of

geros as y(n), or has n-1 simole zeros.
Approzximations of the lower buckling load, P(n)L’

for each branch may be ottsined by truncating the series in

the first of (3.17) and from the condition that

(e)
——13%——— = 0 at the lower buckling locad. These approximations
may be valid only if the expansions (3.17) converge for su®-
ficiently large t. Por example if 2 terms are retained in the

gseries so that
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~ (n) (n) 2
Pn(e),—Pn+P1 e+P2 €

then

Py “Pn -w!n’ .

Lo The Existence of Buckled Solutions Near Double Eigenvalues

-~

We now consgider £ = rn and the _ouble eigenvalues,

+ .

2
‘.-:m n [ m,n= 1,2’.‘., m#“ [ ]

t

(4e1) P =B (> ) =P (2 )

The solutions of the initial value problem (3.2), (3.3) with

€=0, p= “mn and P = Pm(uhn), that satisfy the boundsrr con-

ditions (3.l) are the eigenfunctions®

) (3802 (@ ) 3 )+ (0 2 9 - 120

y(X;Pm(:rm)'Co \):Y ™’

(Lo2a)

z(x;Pm(,Om),c,(,) = z(M)(Iic) !amJl(;;nx) ’nmjl(onx) ¥

where > is an arbitrary real number and

. 21/2 4.
6mn e2 “n/‘m ’
(u.Zb) 21/2u‘
n .
n‘n(a) 3 — 57 [(d/wnm)-l] .
JI(G)(rm'”n)

8 Here, and in all subseguen: ejuations in this secticn,
t e indicies m,n = 1,c,... , m # n, and we shall hereaflter
om.it explicit reference to tanis,
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The double eigenvalue case may be cf esvecial physical
sipnificance., Consider the variation with o of P("~) which isa
defined by

(4.3) P(c) = min P_(p) .
n

Thore are local minimums of P(f) at P = 23/2 o= 21/2;§’

qpP
D= ;2,000 o At ¢ = “n,nel j% is discontinuous or there

are "peaks” in the curve of P(r) at the double eigenvalues.
A corresponding peaking behavior was previously noted [2,17]
in the experimerital buckling loads obtained by Kaplan and
Pung” [1]. Although the experimental boundary conditions
probably differ from those cf Problem B, this phenomenon may
be related to the occurrence of s double eigenvalue.

Since the Jacobian in (3.8) vanishes if o= and
P = Pn’ the procedure given in Section 3 must be modified to
investigate this case. The modifications are essentially
extensions of the methods used in the Poincaré theory when
the variational problem possesses periodic solutions, see
[18] « A new parameter I is introduced and modisied initial
value problems, dxﬁ, for the functions yun(x;P,c,ﬁ,k) and

B
:‘n(x;P,C.i.\) are defined by

f For example, the experimental peaks occur at ~=220, 56 and
vlz :"19. :’23" m.s .
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= e -1 (mn)
Hymn P”mymn - Omnzmn = e:’mnx ymn - +ky .
i — = —ec x-1.2 ., (m;n)
(h-h) hzmn + Zk‘mnymn = =t Pmnx ymn + Kz ’
Yo T 0, Y;n =1, Zon = o, z;n =&, forx =0 .

We can show, as in the preceding section that the unique

solution or'4;n .8 an analytic function of the parameters

P

P, €, >~ and k. The oarameter values are to be determined

such tha% the solutions of‘“%n satisfy the boundary conditions,

“405) Ymn(l;Poap’bn’\) = zm(l P,E,S,L) =C .

-

Por the special parameter values ¢ = K = 0 and P = Pm = Pn

. - . 0 mn o
the solutions of > are ymn(x;Pm(:;n),C.énn.O) = Y( )(X;&hn).

3m(xipm( ’?mm) »0, A:n

,0) = z(mn)(x;jgn), and thay satisfy (4.5)
for all bounded and real ;:n' The implicit function theoream
is used to determine other roots of (L.S5) near each root
[Pa(;in)’c’“:n’o}' Proceeding as in Section ]} and using

the appropriate variational problems we can show that the
Jacobian of (L4.5) with respect to P and £ and evaluated at

.0 - .
each root does not vanish for all & # “mn? e Thus there

are solutiorns of (L.S),

(4e6) P

H

Pnl€sf) o K= K (€,9)
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which are analytic functions of € and & in some sufficiently
small neighborhood of each rouot [Pm(fhn)'o’b;n’ol’ for which
égn #‘5mn' 5%m and satisfy the conditions

o] - - 0 _
('#07) Pm(ovémn) - Pm - Pn ’ Km(ooﬁmn) =0 .

Hence the modified problems (L.4), (4.5) have solutions

y(m) (x3€,8) = ymn(x;Pmn(e’S) 1648y Lmn(ﬁ:é)) ’
z(mn)(x;c,é) z |nn(x;Pmn(e,$),e,S.kmn(E.é)) which are analytic

in ¢ and 6 for sufficiently small |e| and lé-ﬁsml.
Solutions of the modified problems are solutions of

the original problem (3.,2), (3.3) and (3.4) if & and € are
chosen so that the bjfurcation equations [16]

(h.a) Km(ﬁ, 3} = 0 »

are satisfied. Thus if (4.8) have solutions & = 5mn(£) vh ich

satisfy the conditions
. .0
(h‘9) 5m(0) - Omn »

then

rm(x;c) = zx"ly(m) (x;c.Sm(t)) ’
(4.10)

%(x;t) = tx‘ly(m) (x;t.ém(t)) »

sre solutions of rrodlem B with { = Pnn.
To investigate the solutions of (L.8) we employ the
analyticity of y, 3, P and ¥ and expand thea in the forms:
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o)
Y(m)(xte’ 7)) = :t(mn) (x5 =) +;I yl((m)(x ’)Ek ,
(28]
z(m)(x.E.S) = z(”n)(xw) +_ zl((mn)(x;:%)ek )
k=1
(4o11)
o) 00
L) - - (m) . k - — (n.n) ~ k"'l
Lm me?;I Pk (,)E ’ ,m— €k= rk (’)E ’

where we have used the last of (4L.7). The series in (L.11)

. . o , s .
converge in scre interval e < S The coeificients in the

expansions are determined vy substituting (l,.11) into (L.4)
end (L.5). T! 1linear boundary value protlems for y{nn) and
z{mn), obtained from the coelficients oi ¢, pcssess solutions,
if and only i the inhomogenecus terris satisfy the appropriate
orthogonality conditicn. This condition determines ¢ ()

1
and Pimn) &s

I (gy w32 L 2 )7L

1 mn o nonm k"‘R?rmAxr;-n“'w'"muﬁnm) ’
(4Le12)
(M) " - A _2\’1
where,
T o . ’2~ 2 -1, 2 . n=c : 2
Ammzta 3o(. );Bhnﬂéﬂmumn*z (“*‘nr'émn ﬂncun*( nn‘ly'nna
mn 2 1.
(Le13)
1
- 2 T
by = ITC XII (o x)ax




Using the last of {.11), the bifurcation equations

(4«8} reauce to

&
{dyadli) Etém}(é) £l oo,

o

Ir {4o1L) have continuous solutions 5 = ﬁhn(e) with

= oy L0 » . :
Emn(0) = &, then & must satisfy vhe bifurcaticn conditiong

Convsrasely, if s®  satisfy the bifurcation conditions (L.15)

mn
and if

(4+16) a5

tuen the implicit function theorem is apolicable to (L.lh)
and it implies that the bifurcation equations can Ue solvad

in soms sufficiently small neighborhoed of 3= © , ¢ =0,

U
“mrn

The solutions $= 35 ‘t) are analytic functi is for suffi-

mn

ciently small ¢ and sc.iafy éhn(O) ='5;n'
Ina.rting (4.12) and (4.13) into (L4.15) and (4.16) and

defining & by

S { S
(4e17) -
ST

the hifurcation condi‘ions reduce to the cubics:
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3 2
(4.18) &n t Bonfn * OB S * Oy, = 0

and the "solvability conditions™ {L.16) reduce to:
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Thus we coriclude from {L,,18) that for each m &and n there is
at lessgt one real Sgn that satisfies the bifurcation condition
o -

{ - \""} .
and"mn rm’ nm

are nct roote of (L.18).

If the explicit values of the integrals émn’ defined
in (4.13) are knowrn then the roots of (i;,18) can be determined
using atandard formulae. These intsgrals were numerically
determined using Simpson's Rule with S50C mesh points* form
and n in the renge 1L <m, n < 25. The Bessel functions were

evaluated using the procedure of [19] for arguments Letween

zero &nd eight and ayoropriate asymptotic formulae wers used

* Several of the integrals were evaluated using 1300 mesh
pcints. No significant difference was observed with the re-
sults of the 500 point mesh. Double precision arithmetic was
employed and all calculations were preformed on the IBM 7094
computer at the AEC Computing and Aprlied Matlematics Center
of the Courant Institute of Mathematical Sciences. The authop
is indebted to Dr, P. Bauer for conductin_ the computation,

—
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tor larger arguments. Ve found that ail the roots of {4.18),
for m and n in the range* l<m n <25 =atisfied (4.19}
well within the accuracy of the computation. In fact, the
left side of (4.19) was usually quite large. Hence we have
shown that there is at least one solution of Problem B for P
in some su’ficiently small neighborhood of each double
eigenvalue with m and n in the sbove range, %e zonjecture
that there are <olutions near each double eigenvalue for all
n,n=1;2,¢.00 » We also find that for the following indiciea
{lL+18) has three real roots:

1} n=mel, 3<n<25, n odd,
2) n=m+3, 14<n<25, n odd,
3) n=2n+l, 2<n<25,
L) n=2m+3, 6<n<25,
5) n=2m+5, 8<n<25.

Thus in & sufficiently small neighborhood of the double
eigenvalues with the above indicies there are three soluticns

of Problem B. Hence, as C—> ~ _ the m-th and n-th branches

mn
coalesce and when P = o one solution may be "destroyea" or
a third solution may be "created" depending on the values of

the f{ndicies m and n.

F By symmetry we need only consider n > m,
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S. The Intermediate Buckling Load

It is convenient toc reformulate Problem B to estshlish

the existence of the intermediat: buckling load PN’ cr
equivalently Xy = JP“, and to oblaln upper and lower hounds
on i*s magnitude. fguation (2.1b) is integrated and the
second of (2.3) is used to obtain

X

(5.1) g'(x) = —-x3 [feixo) +2f(x°)]xgdxo .
0

Then, using (2.4b), g(x) is given ss a functional of f(x) by

X

(5.2) g(x) = j - g' (xl)dx1 .
!

The boundary value problem, B, is reformulated as Problen B'
as follows: To find a function f(x) which possesaes a contine-
uous second derivative and satisfies the differential equation

(2.1a) and the boundary conditions
(5¢3) £'(0) = £(1) =0 .

The function g(x) in (2.la) is defined by (5.1) and (5.2).
These squations imply that g(x) satisfies (2.l1b) and
g'(0) = g{1) = 0. This statement of the boundary value
problem is similar to the one introduced in [20] in a study
of the buckling of circular pletes.

The "energy" functional V is defined as,

1
(5b) V[e(x)ih s ] = [2(2'%(x) - Af2(x)) +» g"%(x)]x3ax ,
-0
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where g'(x) is considered as a functilonal of f(x) defined ty
(5.1). Thus V is a functicnal of f(x) onl7 and it is pro-
portional tc tne difference bstween the pctentiasl energies of
8 buckled and the unbuckled state.

The relstionship between B' and V is obtained by first
defining & class of functions. f(x) is contained in A or is
an A-function if in the interval C < x < 1 it is continuous
and satisfies (5.3), f’(x) is an LZ function and all inte;rals
in {5.1), (5.2) and (5.4) exist, Then it is easy to show
that if £(x) is a sclution of B'it makes V stationary with
respect to &ll A-functicns. The converse of this result can
be proved using the methods cutlined in [20]. The converse
states that if f(x) mekes V stetionary (or minimizes V) then
£"(x) is continuous and f£(x) solves B. Here ro(x)e A is said
to minimize V for a fixed A and D 1if V[f_(x}] < V[f(x)] for
all r(x)<a.

The result concerning the cxistence of lM is now stated

as the

THEOREM. If for every finite < and A there is an
A-function which minimizes V, then A,(:) exists end it is in

m“f S A{+) <2 = P(-) , where P(-) i3 defined in
(Le3), and 'y ia the first sero of J,(x) = 0.

The theorem is a direct consequence of the lemmas given
below and the following inequality, which is easily demon-
strated using classical methods [21],
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1l
12
(5.5) | [#x) --222(x)]xax > 0, for all £(x)<a .
0

Here 0% is also the lowest eigenvalue of tie linearized

buckling problem for the sy metric deformations of radially

comperessed and clamped circular plates:
(5.6) Gf(x) +Af(x) =0, £'(C) =1f£(1) =0 .

We call (5.6) the "equivalent™ circular plate prcblem. The
inequality (5.5) and the functicnal V given in (5.4) and (5.1}

immediately yield

2 - =
LEMMA 1. If X < ﬁl then only f(x) = O minimizes V.
The form o the functional V and the prorerties ol the
eigenvalues (3.5a) and eigenvectors (3.7) of the linear shell

buckling problem yield

LEMMA 2. If A = A(S) then there exist for each . > 0
a_function f(x)e A such that V[f(x)] < 0.

The preof of tils lerma is cbtained by a simple calcula-
ticn of V[f (x)] woere f_(x) = B J,(~ x)/x are eigenfunctions
of the linear theory and Bn are constants restricted tc lie
in the ranges O > Bn > -Zan/ci, n=1,2,se. « The constants

ap and ¢ are defined by

A ox
FREE N
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Lersma 1 implies that if A = A then g.l.b. V[f(x)] < 0. The
renaining two lemmas show that the set of A's is divided into
two disjoint sets: those )'s for which the mini~um of V is

zero and those for which it is negative.

LIMMA 3. If f(x) = 0 minimizes V for X = 10, then only

£(x) = C mipimizes V for all X <2 .
Proof:f de deduce directly from tae form of V tnat if

A < lo’ V > 0 for all A-functicons. Suppose there is a

A =" < lo and an A-functicn £5(x) $ O which minimizes V,
fee. V[¥(x);A"] = 0. Then if X is in the range A" <X <1,
v[rsn) < v[r#2%] = 0. This is in contradiction to the non-
negative property of V for x < 10 and the proof of the lemma

is camplete.

LEMMA . If tte minimum ol ¥V i{s negative Zor )

Proof: By contradiction using Lerma 3.

A
C

“

The theorem is tnen proved if we define RM(’) as the
l.u.b. of those A for which f{x) = C minirizes V. Thus for
each “ there is a A = lﬁ such tnat for all A > Ay there are
buckled states with less energy than the unbuckled state and
for A < 1! all buckled states have greater energy than the
unbuckled state.

The intermediate load can also be characterized by the

'Twihia form of the proof was suggested by Or. M. Newman.
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minimum property, r 7
1
(2f’“+ 5'2)x3dx

(S« (.) = min g
5.7) Ay £(x) #0C€A * 23
2 x"dx

0
5 4
where g'(x) is defined i1 (5.1). Usper bounds for i, are

obtained bty selecting trial A-luncticns to rmake the quotient
in /5,7) as small as rossitle, For examole, functions cf tne
form F{x) = 3F(x) are consiler=d, waere rF(x) “A is a scecified
function end 3 is an arcitrary constant. The juotient is

then @ fu-cticn of 5 only and ¢ is determined to minimize it,

Some of the trial functicns that were used and tne resulting

upper bounds, X, i( ) = a,-‘bi13'3J2. are shown™ in Table I.
IR ) -~
Tatle I
% % L TRt 3.2
i :
i w }
1] 1-x | 15.c 6.S106
e ,
2 1“3& 1:3 &{: 3.7:}37
i
31 1ex? 17,50 | 2.5
h l-xh i :‘c«?.: :z l © ?166
5 l*x-zxz i 15,7576 % 2.783% ;
6 | 2(2-x-x2) | 15.5°5% | .05 B

* The calculations were perforred by . Steto.
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The results” are summarized in Pig. 3 where we also show
accurate approximations of XH obtained from a gumerical
solution of Problem B. Details of these and other calcula-
tions will be reported elsewhere [22].

6. tior b .

Anslogous results can be obtained for other bifurcation
buckling problems. FPor example, for the boundary value
problem consisting of (2.1), (2.3) and (2.5) which we call

Problem 31, we can show that
2 < 2 lP) < Alp)

where A is now the minimum eigenvalue of the linearized shell
buckling theory using the boundary conditions (2.5) in place
of (2.4). Upper bounds for ln(p) are obtained from a formmla
similer to (5.7). These results are ;raphed in Pig. 3 uwith
the predlicticns of Ax obtained from 2 numerical soluticn

of the boundary value provlez ([22].
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Captions for Pigures

Pigure 1. 3Sketch of conjectured load deformation curve for
pifurcation bucklinge Here D is & representativs
defrmaticn, e.g. the normal displacemant of ihe

capts canter.

Pigure 2, Shell greomatry.

pigure 3. Intermsdiate buckling loads for Problems B and BY,

The upper vound curves are essentiaily the envelopes

of the curves givern in Tables I and II.
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